
2024 European Conference on Computing in Construction
Chania, Crete, Greece

July 15-17, 2024

EQUIRECTANGULAR 360°IMAGE DATASET FOR DETECTING REUSABLE
CONSTRUCTION COMPONENTS

Ana Bendiek Laranjo1,2, Jens J. Hunhevicz1,2, Karsten Menzel3, Catherine De Wolf2
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Abstract
Insufficient as-built data hinders the transition of the ar-
chitecture, engineering and construction (AEC) sector to
a circular system. Combining reality capture and machine
learning (ML) could help better detect reusable compo-
nents. However, a comprehensive image dataset of on-site
inventory for circular economy strategies has yet to be
developed. This study introduces and describes the gen-
eration of a purpose-built, 360°dataset. Initial validation
using the YOLOv8 object detection model demonstrates a
63.4% mean average precision (mAP50), making it viable
for computer vision. Further exploration of automating
building stock inventory using 360-degree images and
ML for urban mining is needed.

Introduction
The architecture, engineering and construction (AEC) in-
dustry must change from a linear to a circular system to
minimize its harmful impact and meet climate targets.
Reusing resources is a key circularity strategy for reduc-
ing waste (European Council and European Parliament,
2008). In the built environment, this strategy implies the
non-destructive recovery and reuse of building compo-
nents according to their original purpose without a loss in
their value (Hillebrandt et al., 2018). The extensive reuse
of building components is currently challenged by the lack
of sufficient data about material and substance compo-
sition and the as-built condition of the existing building
stock (Çetin et al., 2021; Iacovidou et al., 2018; Uotila
et al., 2021).
Urban mining projects need detailed (digital) information
on their composition and dimensions to reuse and recycle
building resources efficiently (Çetin et al., 2021; Honic
et al., 2019; Uotila et al., 2021). This as-built data needs
to be generated in advance, typically using reality-capture
techniques such as light detection and ranging (Lidar)
(Gordon et al., 2023; Xiong et al., 2022), 360°cameras
(Gordon et al., 2023), and public digital imaging mining
using Google Streetview (Raghu et al., 2023). Digital data
for information extraction is typically processed further
using photogrammetry for extracting dimensions (Gordon
et al., 2023; Xiong et al., 2022) and machine learning (ML)
for determining the material composition of the building
stock (Raghu et al., 2023).
Among reality-capturing technologies, 360°cameras
proved to be the most viable technology for capturing reli-
able information for deconstruction purposes in a compar-

ative case study, because of their high accuracy and low
noise (Gordon et al., 2023). Panoramic images have advan-
tages over planar photos because of their comprehensive
view of spaces, device cost-effectiveness, and quick data
capture (Barazzetti et al., 2018; Gordon et al., 2023; Chou
et al., 2020). Furthermore, 360°images are increasingly
used for quick image analyses in computer vision applica-
tions (Barazzetti et al., 2018; Gordon et al., 2023; Chou
et al., 2020). However, computer vision and 360°images
have yet to be combined for circularity strategies.
This research examines whether combining building in-
ventory using 360 °cameras with ML can be used to detect
reusable building components. Yet since ML applica-
tions are only as good as the training data on which they
are trained (Géron, 2023), the quality of the dataset is
paramount. The relevance of training data can be defined
as the extent to which it aligns with the data that the model
is likely to encounter in the production phase (Witt, 2023).
This concerns what is depicted and how it is annotated.
The quality of the dataset refers to aspects influencing the
generalization capabilities of a model to unseen data. The
generated dataset should be suitable for the application in
terms of representativeness, image quality, dataset size,
and variance (Géron, 2023). For the envisaged ML ap-
plication, a real-world dataset that simulates a survey of
end-of-life (EoL) scenarios is necessary.
However, in a preliminary field study we found that ex-
isting panoramic datasets of buildings are not suitable for
the above application for the following reasons: they are
either synthetically generated, they are a compilation of
different scenarios without any repetition, they are limited
to specific parts of buildings (e.g., the façade), they are
too homogeneous in quality to be captured on-site, or they
have only very broad labels (e.g., doors are not subdivided
by function into entrance doors, emergency exits, or room
doors)
Therefore, our study takes a first step towards using
360°panoramic images in reusability assessment by gener-
ating and validating a 360°image dataset in a case study on
the Technical University of Dresden (TU Dresden) cam-
pus. The custom dataset (“TUDataset”) is preliminarily
validated using the state-of-the-art YOLOv8 object detec-
tion model to identify building components. The valida-
tion explores whether the data collected during an on-site
audit is qualitatively sufficient for object detection appli-
cations. It also explores the differentiation of component
types within a component category. In so doing, this



Figure 1: Research design of this study.

study gives valuable insights into the process of generat-
ing suitable 360°image datasets for building component
reuse by discussing the chosen approach, potential for im-
provement, and next steps toward a full data-capturing ML
pipeline.

Structure of the paper
The paper is structured according to the Figure 1. First, the
following section describes the representative case study
for EoL situations. It defines the data collection locations
and the objects (i.e., the reusable building components)
to be detected by the ML application. Second, the sec-
tion “Dataset Generation” presents the approach and the
image capture process to showcase how a 360°dataset can
be created, and describes image processing for the spe-
cific use case of component reuse detection. Third, the
“Dataset Validation” section describes how the approach
is validated for computer vision. Experiments with the
YOLOv8 object detection model verify the suitability of
the dataset generation approach for the desired purpose of
detecting reuse components. The methodology steps are
presented in greater detail in the respective sections. Fi-
nally, the discussion reviews the contributions and further
research steps toward a full pipeline of 360°image dataset
creation for ML-based reuse detection.

Case Study Selection
As described in the introduction, the case study determines
the relevance of the dataset for future input data from EoL
buildings. The EoL refers to the final phase of a building’s
existence (after the production and use phase) in its cur-
rent form (Hillebrandt et al., 2018). For this study, the case
of ”Technical University of Dresden (TU Dresden) cam-
pus” was chosen. It was designed to mirror urban mining
projects by encompassing the entire building premises and
emphasizing the frequent repetition of diverse building
component designs within structures. It consists of five
buildings on the TU Dresden campus that were selected
according to the following considerations: around 32%
of the residential and nonresidential buildings demolished
in 2022 were built before 1948, 53% between 1949 and
1986, and only 14% between 1987 and 2010 (Statistisches
Bundesamt, 2023). Accordingly, the case study was lim-
ited to the buildings on campus built between 1906 and
1990: two modern buildings, as well as three buildings of
reform architecture from the early 20th century (see Table
1). Different EoL situations are presented: while the Beyer
Building is partially gutted and currently unused, the Fritz-
F¨

orster building is only partially in use due to renovation.
The Nürnberger Ei and the Schumann building are contain

operating offices and equipment (and, therefore, more data
clutter).
Finally, only publicly accessible buildings were consid-
ered to comply with privacy compliance for publishing.
Accordingly, the building was inventoried outside of busi-
ness hours. People were asked to leave the field of view,
and images with recognizable faces were removed during
data cleaning.

Dataset Generation
While the relevance of the data was ensured in the design
of the case study, the dataset quality (see Introduction) is
addressed in the dataset generation process.

Data collection
A total of 1112 relevant images were captured for the case
study (see 1). The data was generated from scratch using
the specialized OpenExperience 360°camera helmet (Fig-
ure 2). The helmet has two installed 180°cameras, whose
individual images are seamlessly merged into a spherical
or panoramic view by a stitching algorithm. Capturing
images in an onsite audit using a conventional 360°camera
ensures that the data represents the expected input data.
The final ML application is expected to generalize to input
data collected under similar technical conditions.
The equirectangular projection (ERP) on a two-
dimensional pane was used for the dataset. The ERP of the
images has a resolution of 7000 × 3500 pixels, a horizontal
and vertical resolution of 96 dpi, and a bit depth of 24 (see
Figure 3). To address image variance deficiency observed
in existing datasets, the data was captured at different times
of the day and under varying weather conditions, resulting
in different lighting and shading conditions. Furthermore,
the images were taken without a fixed object distance, of-
ten capturing the same room from different positions and
a person’s viewpoint, generating a variance in the object’s

Figure 2: DIGIBAU 360°helmet camera used in this study.
Source: (OpenExperience, 2023).



Table 1: Data generation protocol on TU Dresden campus

Generation
Date

Building Location Construction/
Renovation Year

#Images

30.03.2023 Fritz-Foerster-Bau Mommsenstraße 6, 1069 Dresden 1926/2022 280

30.03.2023 Nürnberger Ei Nürnberger Straße 31a, 01187 Dresden 1996 37

31.03.2023 Georg-Schumann-Bau Münchner Platz 3, 01187 Dresden 1906 369

31.03.2023 Haus 116 August-Bebel-Straße 30, 01219 Dresden 1970/2013 159

14.04.2023 Beyer-Bau George-Bähr-Straße 1, 01069 Dresden 1913 277

1122

Figure 3: Unprocessed ERP image included in the TUDataset.

appearance, scale, and occlusion. Finally, the strongly
varied resolution of the images resulted in different repre-
sentations of the same object.

Dataset Preparation
The generated raw data was prepared using the Roboflow1

online tool through data cleaning, annotation, set partition,
and pre-processing and augmentation further described
below.

Data Cleaning
In object detection, images or videos are used as inputs,
and the features are extracted from the information in the
pixels. The selected YOLO (You Only Look Once) model
employs a feature extraction method that does not require
the prior definition and cleaning of features. Therefore,
the data cleaning was limited to eliminating duplicates
and excluding low-quality and blurred images.

Data annotation
Object detection is a supervised machine learning appli-
cation that requires a fully labeled dataset for the training.
What is recognized and the granularity of differentiation
is determined in the annotation process.
The EU policy fails to provide regulations and prerequi-
sites for the reuse of components without prior (destruc-
tive) testing. Thus, to determine what could be reused
within the case study, a field search including online reused

1https://roboflow.com/

Table 2: Selection criteria for component identification.

Criteria Description

Relevance
in practice

The building components should be
found in large quantities in every
building.

Post-
processing

The component should be reusable
per default, with little refurbishment
and no testing needed.

Typology The components should have standard
features, but different configurations.
Shapes and colors should differ

Indoor The availability of data demands a re-
striction to indoor components.

material marketplaces (Concular, Restado. Bauteilnetz,
Ebay Kleinanzeigen, SALZA, and Bauteilclick), practice
reports, and guidelines was conducted to identify building
components categories with assumed general or ”default”
reuse potential.
Because this study is a proof-of-concept, the scope of the
object detection model was set to recognize only a selec-
tion of reusable components. To fit the ML requirements
on representativeness, quantity, and variance, the selec-
tion criteria in Table 2 were developed. Out of the pool
of default reuse components, five categories adhere to the
established selection criteria: doors, windows, radiators,
sanitary objects, and lights. These component categories
are considered reusable without further destructive testing.
They present a large intra-class variation (e.g., many differ-
ent types of windows) and were captured in large numbers
in the case study.
The next step determines the granularity of differentiation
within the selected component categories. Existing indoor
datasets, such as the PanoContext Zhang et al. (2014),
Indoor360 Chou et al. (2020) etc., differentiate only in
rough component categories, such as doors and windows.
However, function, material, and design are decisive for
component reuse. The selected reusable component cat-
egories, ”windows, doors, sanitary objects, and electrical



Figure 4: Categorization of reusable component selection according to DIN276.

Figure 5: Each image label has a different bounding box
indicating different component types.

installation”, needed further differentiation to meet these
requirements.
This study used the German AEC sector’s building
cost structure of the national standard DIN 276:2018-12
(Deutsches Institut für Normung, 2018) as a reference for
the annotation. The component selection (windows, doors,
plumbing, lights, and heating) was further differentiated
into cost groups according to their associated building
structure and function within the building or system, as
seen in Figure 4. Categorization by cost group will not
only standardize the work in different projects by refer-
ence to a public standard, but it could also allow for rapid
cost determination for selective reconstruction.
In the annotation, the selected reusable component cate-
gories were set as super-categories, and the different cost
groups were set as component classes. Furthermore, the
component types were differentiated within these classes
according to the material and design. For example, if the
frame materials differed, two external glass doors with the
same design would belong to different types. Hence, the
labeling was structured according to component category,
class (e.g., exterior door), and type (e.g., type 21). This
resulted in 136 labels, ergo, different component types.

Dataset Partition
This study employed hold-out validation. It is an eval-
uation technique in which the dataset is split into three

subsets: training, validation and test set. The training set
is used to fit the models, the validation set is used to esti-
mate the prediction error for model selection, and the test
set is used to assess the generalization error of the final
model configuration. The test data set is ”held-out” and
only used once, as reusing it can result in a substantial
underestimation of the true test error. The TUDataset im-
ages were therefore divided into 70% training (792), 20%
validation (226), and 10% testing (116) images.

Data pre-processing and augmentation
Applying pre-processing techniques to the training, vali-
dation, and testing sets ensures that the machine learning
model learns and infers based on consistent image proper-
ties. Inference refers to the process of generating predic-
tions.
First, the images were auto-orientated, removing the EXIF
(Exchangeable Image File Format) data from images to
ensure that they are displayed in the same manner as they
are stored on the disk. Then, the image size was stretched
to 640 × 640 pixels. Finally, the last step consists of data
augmentation or training set expansion. This technique ar-
tificially increases the training set size and is a regulariza-
tion method, reducing overfitting. To improve the model’s
tolerance to position, orientation, and size changes, the
augmented instances should be as realistic as possible and
ideally be indistinguishable from non-augmented instances
by the human eye. Following Zhao et al. (2021), several
augmentation techniques considering the particularity of
the equirectangular projections were applied to the training
and validation sets: the images were flipped horizontally
and sheared ± 15°horizontally and ± 15°vertically both
on the image level and bounding box level (see Figure 7).
The outputs per training sample were set to 3, creating
three altered images for every instance and resulting in a
final dataset size of 2718 (3 × 792) images.

Dataset Validation
After generating the dataset, the suitability of the on-
site 360°images for computer vision methods, and con-



(a) Scaling (b) Horizontal flipping

(c) Image level shearing
(+15°horizontally,

+15°vertically)

(d) Image level shearing
(15°horizontally,
-15°vertically)

(e) Image level shearing
(-15°horizontally,

+15°vertically)

(f) Image level shearing
(-15°horizontally,

-15°vertically)

Figure 7: Different Augmentation Techniques

sequently for ML-aided reusability assessment, was vali-
dated using an object detection model.
The use of 360°images poses specific challenges for ob-
ject detection. The projection of the spherical image to
a plane distorts the objects depending on their distance
and angle to the camera viewpoint. Integrating optimized
distortion-aware convolution layers could handle these ge-
ometric deformations (Li et al., 2023). However, for the
purpose of this proof-of-concept study, the conventional
state-of-the-art object detection model YOLO (Redmon
et al., 2016) was deemed appropriate. Different versions

of this one-stage-detector have already been applied in the
field of object detection in 360°images (Chou et al., 2020;
Yang et al., 2018), as well as being frequently used as a
benchmark model (e.g. in Zhao et al. (2019, 2020)). Due
to constraints on Graphics Processing Unit (GPU) capac-
ity, the Yolov8s model pre-trained on the COCO dataset
(Lin et al., 2014) was selected.

Model Training
This study adopted an iterative training and validation pro-
cess proposed by Géron (2023): the training configurations
were tweaked based on the performance on an indepen-
dent validation set to avoid overfitting, wherein a model
becomes excessively optimized for the test set and fails
to generalize to novel data. The model was evaluated on
the test set only after selecting a final configuration. This
iterative strategy is simplified in Figure 6. The training
runs, and their validation and final testing were locally
implemented in PyTorch using an NVIDIA RTX A4000
GPU.
The training process for the YOLOv8 model aims to min-
imize the training and generalization errors. In each run,
the cost or loss function compares the predicted bound-
ing box outputs with the actual outputs on the training set
(training loss) and the validation set (validation loss). The
generalization error is calculated as the difference between
validation and training losses and is a key metric indicating
the model’s ability to perform well on new, unseen data.
The model’s training performance, speed, and accuracy
depend on using various hyperparameters and configura-
tions that need manual configuration. This study adopted
the validation approach proposed by Smith (2018) that ex-
amines the learning rate, batch size, momentum, weight
decay, cyclical learning rates (cosine learning rate sched-
uler), and cyclical momentum. Accordingly, training and
validation loss are analyzed during training to detect in-
dications of underfitting and overfitting and determine the
optimal combination of hyperparameters.
An initial configuration was used as a benchmark to ad-
just the training arguments, i.e., learning rate, batch size,
momentum, weight decay, cyclical learning rates (cosine
learning rate scheduler), and cyclical momentum. Nine
configurations were trained and validated. The models
were assessed by their mean average precision (mAP),
precision, recall, and F1 score. A final configuration with
the following hyperparameters was selected: a learning
rate of 0.0007, weight decay of 0.001, the use of a cosine
annealing learning rate scheduler, dropout regularization,
and the Adam optimization algorithm.

Figure 6: The applied iterative model training approach.



Figure 8: The model output with colored bounding boxes
according to their label and superscribed with the confidence of

the selected label.

Model Test
Finally, the chosen model configuration is tested on the
hold-out test set, and its metrics are evaluated. The test
run was performed on the test subset of 116 images and 975
instances. An example of the model’s output in the test run
can be seen in Figure 8. The model achieved an mAP at
an intersection over union (IoU) threshold of 0.5 (mAP50)
of 0.634, indicating a satisfactory overall performance in
correctly detecting and localizing objects (see Table 3).
Furthermore, precision and recall have higher values than
in the validation (see Figure 9). The PR curve reveals
that a significant number of class labels exhibit a compar-
atively high PR score, indicated by the curves above the
blue average PR score line, and a subset of classes with
considerably inferior PR curves. This combination leads
to an overall mAP@50 of 63.4% for all classes.
It indicates a model demonstrating relatively high preci-
sion at the beginning and overall good performance in
precision and recall trade-off. In the class-wise evalua-
tion of the model, in the worst-performing classes, zero
instances were detected, resulting in low precision, recall,
and mAP scores. This indicates that the model does not
effectively detect and localize instances of these classes.
These classes may have visual attributes that are difficult
for the model to distinguish, leading to recognition errors.
Furthermore, insufficient training data for these classes

Table 3: Test set performance metrics.
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Figure 9: Performance metrics of the test run.

could also contribute to poor performance, as the model is
not sufficiently exposed to different examples for effective
learning.

The diagonal in the confusion matrix (Figure 10) suggests
that most classes are confidently predicted. However, the
outliers indicate that some classes are incorrectly assigned
to another specific class with high confidence. This can
be recognized by a single point in a row and the coloring
of the point in the graph. For these classes, more images
or higher quality images are needed so that the model ex-
tracts features that lead to differentiation from the other
component types more efficiently. Certain classes, such as
class 135 (window-interior-type8) and class 136 (window-
interior-type9), lack fundamental distinguishing features,
which is visible in the erroneous assignment to very dif-
ferent component types (doors, lights, windows).

Figure 10: Normalized confusion matrix in test-run.
Class IDs 1–52 = door types, 53–59 = lights,

60–64 = sanitary objects, 65–136 = window types.



Discussion
The implemented YOLOv8 object detection model shows
that satisfactory accuracy can be achieved using conven-
tional object detection models on equirectangular projec-
tions for differentiating component types within a class.
The test metrics indicate effective assignment to building
component categories (see Fig. 4), with most errors oc-
curring in differentiating component types within the same
component class. For instance, misclassified windows are
mostly labeled as another window type rather than a dif-
ferent class, like doors or lamps. The model’s overall
performance indicates that the differentiation into differ-
ent component types needed for the reusability assessment
is possible. However, refining misclassifications, minimiz-
ing false positives and negatives, and augmenting training
data for complex classes would improve its accuracy in
recognizing component types.
A limitation of this study is the component-level annota-
tion, which is time-consuming and, thus far, only includes
component types from the case study. Using the object de-
tection model trained on the TUDataset for other buildings
will face challenges in detecting new building component
types. Therefore, for subsequent research, the dataset an-
notation will be edited to be broader by eliminating further
typification according to design and material. Only the cat-
egories of the DIN276 (see Figure 4 should be considered:
e.g., exterior windows, skylights, dome lights, exterior
doors (entrance, emergency), interior doors (room doors,
WC doors), toilets, sinks, radiators (vertical, horizontal),
lights (fixed luminaires), and safety lights. Combining ex-
isting labels into broader ones will introduce further intra-
class variation, promising a better generalizing model and
ensuring applicability to new buildings and EoL situations.
While a simplified annotation process is considered to fa-
cilitate the up-scaling of the proposed approach to further
building inventories, future studies to assess and validate
scalability to other building contexts and larger datasets
are needed.
This study aimed to detect the component category and
type. However, more as-built information, such as the
components’ dimensions, material, and condition, should
be extracted for reuse assessment. Therefore, photogram-
metry and further feature extraction will be explored in
upcoming research.
Furthermore, this study only used the object detection
model to validate the approach. Further research will focus
on the functionality and performance of the model. Dif-
ferent established object detection models should be com-
pared in terms of robustness in dealing with large datasets
and detection performance for the final model selection.
Furthermore, various approaches integrating spherical lay-
ers into convolutional neural networks have been proposed
in research (Cohen et al., 2018; Li et al., 2023; Zhao et al.,
2019). Considering these additional models is promising
for effectively addressing the distortions in ERP images
and potentially improving the detection performance.
Finally, some limitations stem from the case study selec-

tion. First, resource constraints required a limitation on the
included architectural styles, potentially compromising the
generalizability of the results to buildings from different
eras. Therefore, the selection criteria should be reviewed
to integrate diversity of architectural styles and building
functionalities, and the TUDataset should be continuously
adapted to represent the variety of existing building stock.
Second, the selection of component categories examined in
this research represents only a small subset, and a broader
range of non-destructive, non-toxic component categories
could potentially be reintegrated into a circular economy.
Third, it is based on the assumption that all areas and
spaces within a building are accessible. Consequently,
only the components captured by the camera can be iden-
tified. Therefore, the data introduces uncertainties in the
number of components similar to those in traditional on-
site inspections and component identification processes.

Conclusion
The main contribution of this research is the introduction of
an approach to generate well-suited 360°image datasets for
circular component reuse. The selected case study, cen-
tered around five buildings on the TU Dresden campus,
served as a representative scenario for end-of-life sites.
The dataset generation process involved using a special-
ized OpenExperience 360°camera helmet, capturing 1112
relevant images at different times of the day and under
varying weather conditions. Data preparation, including
cleaning, annotation, set partition, and pre-processing, was
conducted to ensure the technical and relevance require-
ments of datasets.
The resulting fully-labeled TUDataset consists of approx-
imately 2,400 panoramic images in equirectangular pro-
jection and 136 object classes, facilitating research and
practical applications in object detection. Data quality and
relevance requirements were addressed in the case study’s
design and during the dataset generation process. The
YOLOv8 object detection model validated the real-world
dataset, achieving a mAP50 of 0.634 on the test set.
The workflow developed in this research can be extended to
other reusable building components, thereby contributing
to developing new cost-effective and scalable approaches
for building component recovery. Exploiting machine
learning and 360°images for the inventory and reuse as-
sessment could save time and costs, making circular strate-
gies more competitive.
Overall, this study demonstrates that 360°images gener-
ated on site are suitable for effectively detecting differ-
ent building component classes (windows, doors, sanitary,
lamps, radiators), and provides the foundation for the next
steps toward automated reusable component detection.
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